8,656 research outputs found

    Oxygen transport across the benthic boundary layer: from a 1-D to a 3-D view

    No full text
    The sediment-water interface is a fascinating environment.Bordering the dynamic processes between hydrosphere andgeosphere, it is the gate-keeper for the benthic-pelagiccoupling of carbon and nutrient cycles in aquatic ecosystems.In this region boundary layer hydrodynamics interact withtransport processes across the interface, organic matterdeposited on the sediment surface supports and focuses thebiological activity to a thin veneer teeming with life, and steepchemical gradients provide diverse zones for biological andgeochemical processes.Just as the earth surface appears flat when viewed fromorbit, the sediment surface appears flat when we read mostbiogeochemical literature which describes it with only avertical axis. However, many aspects of sediment biology andgeochemistry require a three-dimensional view to understandtheir essential properties. We need novel approaches withgreater information capacity to study the spatial structures ofbiota, environments, and processes. To stimulate thedevelopment of such approaches, this short review will discuss some of the small-scale characteristics of the benthic boundarylayer, and illustrates the 3-D world of the sea floor based onrecent progress in analytical and experimental techniques. Thefew examples used are taken mostly from the work of our owngroup since brevity forces us to neglect the excellent work ofmany colleagues

    The Benthic Boundary Layer: Transport Processes and Biogeochemistry

    No full text
    Interdisciplinary research is certainly one of the current buzzwords that needs to be incorporated in virtually every grant proposal. The idea that integration of different scientific fields is a prerequisite for progress in Earth sciences is now well recognized. The benthic boundary layer (BBL) is one area of research in which physicists, chemists, biologists, geologists, and engineers have worked in close and fruitful cooperation for several decades. The BBL comprises the near‐bottom layer of water, the sediment‐water interface, and the top layer of sediment that is directly influenced by the overlying water. In 1974, a BBL conference in France resulted in a book titled The Benthic Boundary Layer edited by I.N. McCave. This publication contained contributions from scientists from a wide range of disciplines and gave an overview of the state‐of‐the‐art of BBL research. However, science has moved on in the past 25 years. Significant conceptual and technological progress has been made, and it is definitely time for an update

    Thermophilic Sulfate Reduction in Hydrothermal Sediment of Lake Tanganyika, East Africa

    Get PDF
    In environments with temperatures above 60 degrees C, thermophilic prokaryotes are the only metabolically active life-forms. By using the (SO42-)-S-35 tracer technique, we studied the activity of sulfate-reducing microorganisms (SRM) in hot sediment from a hydrothermal vent site in the northern part of freshwater Lake Tanganyika (East Africa). Incubation of slurry samples at 8 to 90 degrees C demonstrated meso- and thermophilic sulfate reduction with optimum temperatures of 34 to 45 degrees C and 56 to 65 degrees C, respectively, and with an upper temperature limit of 80 degrees C. Sulfate reduction was stimulated at all temperatures by the addition of short-chain fatty acids and benzoate or complex substrates (yeast extract and peptone). A time course experiment showed that linear thermophilic sulfate consumption occurred after a lag phase (12 h) and indicated the presence of a large population of SRM in the hydrothermal sediment. Thermophilic sulfate reduction had a pH optimum of about 7 and was completely inhibited at pH 8.8 to 9.2. SRM could be enriched from hydrothermal chimney and sediment samples at 60 and 75 degrees C. In lactate-grown enrichments, sulfide production occurred at up to 70 and 75 degrees C, with optima at 63 and 71 degrees C, respectively. Several sporulating thermophilic enrichments were morphologically similar to Desulfotomaculum spp. Dissimilatory sulfate reduction in the studied hydrothermal area of Lake Tanganyika apparently has an upper temperature limit of 80 degrees C

    Thermal Band Heating for Intra-Row Weed Control

    Get PDF
    Surface steaming of soil is a very energy-intensive process, and consequently, efforts have been made to develop a machine for narrow-band steaming of the soil under and around rows of cultivated plants prior to seeding. The use of this machine may achieve up to 90% energy savings, and will also reduce the amount of damage to the flora and fauna. A special test rig has been developed with the objective of obtaining new information about narrow-band soil steaming. For a detailed analysis of the temperature profile in a cross-section of the processed band, an apparatus has been developed especially to record the temperatures obtained at 63 locations and at seven levels across the ditch. On the basis of the results from the test rig, a prototype band-steamer for field use has been developed. Tests have shown that soil temperatures exceeding 70C will be needed to protect against germination of weed seeds. For band heating such a treatment in 50 cm rows requires about 5.8 GJ/ha

    Ecology of Thioploca spp.: Nitrate and sulfur storage in relation to chemical microgradients and influence of Thioploca spp. on the sedimentary nitrogen cycle

    No full text
    Microsensors, including a recently developed NO3 − biosensor, were applied to measure O2 and NO3 − profiles in marine sediments from the upwelling area off central Chile and to investigate the influence of Thioploca spp. on the sedimentary nitrogen metabolism. The studies were performed in undisturbed sediment cores incubated in a small laboratory flume to simulate the environmental conditions of low O2, high NO3 −, and bottom water current. On addition of NO3 −and NO2 −, Thioploca spp. exhibited positive chemotaxis and stretched out of the sediment into the flume water. In a core densely populated with Thioploca, the penetration depth of NO3 − was only 0.5 mm and a sharp maximum of NO3 − uptake was observed 0.5 mm above the sediment surface. In sediments with only fewThioploca spp., NO3 − was detectable down to a depth of 2 mm and the maximum consumption rates were observed within the sediment. No chemotaxis toward nitrous oxide (N2O) was observed, which is consistent with the observation that Thioploca does not denitrify but reduces intracellular NO3 − to NH4 +. Measurements of the intracellular NO3 − and S0 pools inThioploca filaments from various depths in the sediment gave insights into possible differences in the migration behavior between the different species. Living filaments containing significant amounts of intracellular NO3 − were found to a depth of at least 13 cm, providing final proof for the vertical shuttling of Thioploca spp. and nitrate transport into the sediment

    Self-Similarity and Lamperti Convergence for Families of Stochastic Processes

    Full text link
    We define a new type of self-similarity for one-parameter families of stochastic processes, which applies to a number of important families of processes that are not self-similar in the conventional sense. This includes a new class of fractional Hougaard motions defined as moving averages of Hougaard L\'evy process, as well as some well-known families of Hougaard L\'evy processes such as the Poisson processes, Brownian motions with drift, and the inverse Gaussian processes. Such families have many properties in common with ordinary self-similar processes, including the form of their covariance functions, and the fact that they appear as limits in a Lamperti-type limit theorem for families of stochastic processes.Comment: 23 pages. IMADA preprint 2010-09-0

    Grain Characteristics, Chemical Composition, and Functional Properties of Rye (Secale cereale L.) As Influenced by Genotype and Harvest Year

    Get PDF
    Grain characteristic, chemical composition, and functional properties of rye were measured in 19 different cultivars grown in one location in up to 3 years. The cultivars included 8 adapted hybrids, 7 adapted population cultivars, and 4 nonadapted population cultivars. The results showed a significant influence of both harvest year and genotype on grain characteristics, chemical composition, and functional properties of the grain. Multivariate data analysis confirmed that the variations in the data were explained by yearly and genotype differences. Calculations of variance components showed that the variations in plant height, harvest yield, and protein content were mainly due to genotype differences and to a lesser extent to differences among harvest years. The kernel weight, hardness index, and content of dietary fiber components, however, were more strongly influenced by the harvest year than by the genotype. Differences in starch properties measured by falling number (FN), amylograph peak viscosity, and temperature at peak viscosity were more strongly influenced by harvest year. The water absorption was strongly influenced by genotype effects, compared to yearly differences. FN and amylograph peak temperature were positively correlated (r = 0.94). No correlation was found between the water absorption and the relative proportion of water-extractable arabinoxylan (AX) compared to the total AX content. However, the degree of ferulic acid cross-linking showed a negative correlation (r = -0.70) with the water absorption
    corecore